CHARLENE SHIOW-CHYN WANG and JEAN'NE M. SHREEVE Department of Chemistry, University of Idaho, Moscow, Idaho 83843 (U.S.A.) (Received September 13th, 1971)

SUMMARY

Dimethylchlorotin carboxylates, $(CH_3)_2CISnOOCR$ (R = CH₃, CF₃, C₂F₅, C₃F₇, CF₂Cl, CH₂Cl, CHCl₂, CCl₃, CH₂Br, CH₂I) are prepared by heating trimethyltin chloride with an excess of the appropriate acid at 100°. These compounds have been studied by ¹H and ¹⁹F NMR, infrared, and Mössbauer spectroscopy. Based on this spectral data, in the solid state or in methylene chloride or chloroform, pentacoordinate tin is present. The solids are polymeric with bridging carboxylate units. In solution, the nonfluorinated carboxylate-containing compounds are very likely chelate monomers, while the remaining compounds retain polymeric character.

INTRODUCTION

Dialkylchlorotin carboxylates ($R_2ClSnOOCR'$) have been prepared by a variety of methods including the reactions of dialkyltin dichlorides with carboxylic acids or salts of these acids¹. Recently we reported² the syntheses of diorganochlorotin carboxylates in high yield via the reactions of triorganotin chlorides with carboxylic acids which involve the rather unexpected formation of methane³

$$(CH_3)_3SnCl+RCO_2H \rightarrow (CH_3)_2SnClO_2CR+CH_4 \\ R=CH_3, CF_3, C_2F_5, C_3F_7, CF_2Cl, CH_2Cl, CHCl_2, CCl_3, CH_2Br, CH_2I \\ R=CH_3, CF_3, C_2F_5, C_3F_7, CF_2Cl, CH_2Cl, CHCl_2, CCl_3, CH_2Br, CH_2I \\ R=CH_3, CF_3, C_2F_5, C_3F_7, CF_2Cl, CH_2Cl, CHCl_2, CCl_3, CH_2Br, CH_2I \\ R=CH_3, CF_3, C_2F_5, C_3F_7, CF_2Cl, CH_2Cl, CHCl_2, CCl_3, CH_2Br, CH_2I \\ R=CH_3, CF_3, C_2F_5, C_3F_7, CF_2Cl, CH_2Cl, CHCl_2, CCl_3, CH_2Br, CH_2I \\ R=CH_3, CF_3, C_2F_5, C_3F_7, CF_2Cl, CH_2Cl, CHCl_2, CCl_3, CH_2Br, CH_2I \\ R=CH_3, CF_3, C_2F_5, C_3F_7, CF_2Cl, CH_2Cl, CHCl_2, CCl_3, CH_2Br, CH_2I \\ R=CH_3, CF_3, CF_$$

This is particularly interesting when the dialkylchlorotin product is compared with the trimethylsilyl perfluoroacetate obtained in 80% yield from the analogous reaction with trimethylchlorosilane and CF_3COOH^4 with hydrogen chloride as the only other product.

Some of the structural aspects of organotin compounds have been reviewed by Okawara and Wada⁵. Extensive work on the infrared as well as nuclear magnetic resonance and Raman spectra and X-ray data confirm that most compounds of the type R_3SnCO_2R' occur as polymeric solids (penta-coordinated tin) with planar trimethyl and bridging carboxylate groups⁶⁻¹⁴. In solution, or in the liquid phase, the compounds are monomeric. Formation of the polymeric structure is impeded by steric hindrance of bulky alkyl groups and also does not occur with thio- or dithioacetates. Thus, i-Pr₃SnOAc was found to exist as a monomeric liquid at 25° rather than as a five-coordinate polymer. Infrared spectral studies of halogen-substituted

tributyltin acetates also indicate four-coordinate structures in solution¹⁵. In contrast, the structure of compounds of the type $R_2CISnCO_2R'$ is thought to be five-coordinate and monomeric in solution, presumably with chelate carboxylate groups¹⁶.

 $R = C_2 H_s, n-C_3 H_7, H; R' = C H_3$

We have now prepared ten compounds of this type where R is methyl and R' is a variety of haloalkyl groups and have attempted through available spectral techniques (vibrational, NMR and Mössbauer) to establish the structure of these materials. We report our conclusions below.

EXPERIMENTAL

Preparation of dimethylchlorotin carboxylates

A standard Pyrex glass high vacuum system was used for manipulating volatile materials and for separating the volatile products. All of the dimethylchlorotin carboxylates are prepared by sealing the reactants in a thick-walled Pyrex tube. *E.g.*, trimethyltin chloride (3.94 mmol) and an excess of trifluoroacetic acid (19.1 mmol) when heated at 100° for several hours form methane (3.94 mmol) quantitatively as measured by PVT techniques. The excess acid is removed under vacuum with concomitant heating when required. Essentially 100% conversion to the dimethylchlorotin trifluoroacetate (3.94 mmol) occurs. With the exception of the dimethylchlorotin monohaloacetates (~60% yield based on the amount of trimethyltin chloride converted), all preparations are essentially quantitative. Lower yields are due in part to the necessity for subliming the product from the reaction vessel.

Preparation of trimethyltin acetate

An excess of glacial acetic acid is added to a pyridine solution of trimethyltin chloride (2.5 mmol/cm³). After stirring for several minutes, a white solid precipitated from solution. Pure trimethyltin acetate (1.9 mmol) was obtained by crystallization from water.

Methods

Elemental analyses of dimethylchlorotin perfluorocarboxylates and chlorodifluoroacetate were performed by Beller Mikroanalytisches Laboratorium, Göttingen, Germany. Other compounds were analyzed by Bernard Schecter of this department. Some chlorine analyses were determined using Volhard's method. The elemental and melting point data are given in Table 1. Melting points of the solid compounds were determined using a Thomas Hoover capillary melting point apparatus.

Infrared spectra were recorded using a Perkin-Elmer Model 621 grating spectrophotometer with a range of $4000-250 \text{ cm}^{-1}$. Spectra were calibrated from known peaks of a polystyrene film. Spectra of solids were obtained with pressed KBr

289

0

ELEMENTAL ANALYSIS OF DIMETHYLCHLOROTIN CARBOXYLATES (CH ₃) ₂ SnCl(OCR)						
R	М.р. (°С)	C (%)	H (%)	Cl (%)	Sn (%)	F (%)
CF ₃	118	16.21 (16.15)ª	2.13 (2.02)	12.12	40.11	19.4 (19.18)
C ₂ F ₅	103-104.5	17.26 (17.28)	1.90 (1.73)	10.41 ^b (10.21)	33.81	27.1
C ₃ F ₇	115	18.24 (18.13)	1.54 (1.51)	8.96 ^b (8.93)	29.51	33.0 (33.49)
CF ₂ Cl	128-129	`15.22 [´] (15.31)	1.94 (1.93)	22.49 (22.63)	37.49	12.3
CH ₃	187–188°	· · /		()	(21102)	()
CH ₂ Cl	129-130	17.52 (17.29)	2.93 (2.90)			
CHCl₂	, 130-131.5	15.60 (15.38)	2.52			
CCl ₃	196	14.05	1.76			
CH ₂ Br	114–117	15.04	2.55			
CH₂I	127-128	13.55 (13.00)	2.60 (2.18)			

^a Calculated values in parentheses. ^b Determined by Volhard method. ^c Lit.¹⁷ 184-186°.

discs or with nujol mulls. Spectra of liquids or solutions in CHCl₃ or CH₂Cl₂ at several concentrations up to about 0.2 M were recorded from compensated KBr cells. High resolution ¹⁹F NMR spectra were obtained with a Varian HA-100 spectrometer operating at 94.1 MHz and ¹H NMR spectra were recorded with an A-60 NMR spectrometer. Acetone- d_6 or CHCl₃ was used as a solvent and tetramethyl-silane and/or trichlorofluoromethane as internal references. The Mössbauer spectra were determined at the University of British Columbia by using apparatus described previously¹⁰. Tin (IV) oxide was used as the reference and the spectra were recorded at -196° .

Reagents

 CF_3CO_2H , $C_2F_5CO_2H$, $C_3F_7CO_2H$ and CH_2BrCO_2H were obtained from Aldrich Chemical Co.; CF_2ClCO_2H from Pierce Chemical Co.; CH_2ICO_2H from Eastman; CH_3CO_2H and CH_2ClCO_2H from J. T. Baker Chemical Co.; and $CHCl_2-CO_2H$ and CCl_3CO_2H from Matheson, Coleman and Bell. Trimethyltin chloride was purchased from Alfa Inorganics.

RESULTS AND DISCUSSION

The reactions of trialkyltin chlorides with metal carboxylates have been used to prepare trialkyltin carboxylates¹. However, we find that triorganotin chlorides react with carboxylic acids to give diorganochlorotin carboxylates² and alkane. Cleavage of the tin-carbon bond in tetraorganotin compounds has been used to prepare substituted organotin compounds^{18,19}, but dealkylation or dephenylation

of triorganotin chlorides occurs only in a few cases²⁰. However, in the reaction of tetraorganostannanes with hydrogen halides at higher temperature or for long periods at low temperature, diorganotin dihalides are formed²¹⁻²⁴.

 $R_4Sn + HX \rightarrow R_3SnX + RH$ $R_3SnX + HX \rightarrow R_2SnX_2 + RH$

Recently Aubke *et al.*²⁵ reported that the reactions of HSO₃R (R = F, CF₃, Cl, Me, Et) with trimethyltin chloride yield Me₂Sn(SO₃R)₂ and methane and hydrogen chloride. They suggest the stepwise replacement of chloride by the acid anion followed by production of methane. However, under the conditions used in the present study, no HCl is obtained and a maximum of one mole of methane per mole of triorganotin chloride is produced regardless of the acid/tin compound ratio.

Triorganotin halides, in which the halogen atom sufficiently increases the acceptor strength of the molecule, have the tendency to interact with donor molecules to form trigonal bipyramidal adducts. The existence and structure (I) of penta-coordinated tin addition compounds, $(CH_3)_3$ SnCl·B²⁶⁻²⁸ where B is $(CH_3)_2$ SO, Ph₃PO or CH₃C(O)N(CH₃)₂, have been based on NMR spin-spin coupling values (J(Sn-CH₃)) and infrared studies.

The 1/2 molecular complexes of SnCl_4 and aromatic acids²⁹ have been isolated. For these compounds, Mössbauer studies have been used to lend support to the structure in which the carbonyl oxygen coordinates directly to the tin atom. Therefore, the reaction of trimethyltin chloride with carboxylic acids may occur via an adduct intermediate, such as II. Such an intermediate would favor formation of CH₄

rather than HCl. The Sn–Cl bond energy in $(CH_3)_3$ SnCl is about 85 kcal/mole, while that of the Sn–C bond in $(CH_3)_4$ Sn is about 55 kcal/mole³⁰. Therefore, the Sn–C bond in $(CH_3)_3$ SnCl is expected to be weaker than the Sn–Cl bond and formation of CH_4 is not unexpected. McKennon and Lustig³, in a reaction of another strong acid (difluorodithiophosphoric acid) with trimethyltin chloride also observe quantitative formation of methane. This reaction also was carried out in the absence of base.

However, we have found that in the presence of pyridine, trimethyltin chloride reacts with acetic acid to form trimethyltin acetate. Analogously, alkyltin chlorides

form organostannyl arsenates³¹ with arsenic acids in the presence of triethylamine according to:

$$R_{4-n}SnCl_n + n HOAs(O)R'_2 + n (C_2H_5)_3N \rightarrow n (C_2H_5)_3NHCl + R_{4-n}Sn(OAs(O)R'_2)_n$$

In these cases, the reactions could arise from nucleophilic attack by the acid anion at the positive tin center which would tend to weaken the Sn–Cl bond particularly when accompanied by the strong driving force provided by the formation of the quaternary ammonium chloride salt.

There is a marked difference in the behavior of $(CH_3)_3$ SnCl towards acids compared with that of $(CH_3)_3$ SiCl^{3,4} where HCl and not CH₄ is invariably formed. Again this is to be expected when it is noted that the bond energy for Si-C > Si-Cl while Sn-C < Sn-Cl.

Nuclear magnetic resonance spectra

The ¹⁹F NMR of some dimethylchlorotin carboxylates are listed in Table 2. The chemical shifts and coupling constants are in agreement with those reported for similar compounds³². The chemical shifts are essentially independent of the solvent used. No coupling between H-F or Sn-F is observed.

TABLE 2

¹⁹F NMR SPECTRA OF DIMETHYLCHLOROTIN PERFLUOROCARBOXYLATES, (CH₃)₂SnClOC(O)R

R	$\varphi^*(CF_3)$	φ*(α-CF ₂)	$\varphi^*(\beta - CF_3)$	J (Hz)
CF ₃	75.5 (s)⁴			
	75.8 (s) ^b			
C ₂ F ₅	83.2 (t) ^a	120.8 (q)		1.3
	83.1 (t) ^b	120.7 (q)		1.3
C ₃ F ₇	80.9 (t) ^a	118.2 (q)	126.9 (s)	8.7
	81.5 (t) ^b	119.9 (q)	127.7 (s)	8.6
CCIF ₂	62.2 (s) ^a			
	62.3 (s) ^b			

^a Solvent acetone. ^b Solvent chloroform.

Methyltin derivatives are particularly suitable for ¹H NMR studies because the proton-tin coupling constants are determined easily. In recent years, many NMR studies have been carried out on trimethyltin carboxylates^{6,7} and dimethyltin diacetates³³, but none of the dimethylchlorotin carboxylates has been examined. Table 3 includes the proton chemical shifts and proton-tin coupling constants for dimethylchlorotin carboxylates determined during this work.

The observed chemical shifts can be explained as a function of the screening constants of the substituents while the coupling constant values reflect the differences in the state of hybridization^{3,4} and the coordination number of the tin³⁵. There is a systematic decrease in the screening constant of the CH₃ protons when methyl groups are successively displaced by the more electronegative chlorine atoms or acetyl groups on tin^{28,34,36–38}. The Sn–CH₃ coupling constants, $J(^{117}Sn-CH_3)$ and $J(^{119}Sn-CH_3)$,

ο

TABLE 3

PROTON NMR SPECTRA OF DIMETHYLCHLOROTIN CARBOXYLATES, $(CH_3)_2$ SnClOCR

R	$\delta(CH_3-Sn)$	0	$J(^{119}Sn-CH_3)$	$J(^{117}Sn-CH_3)$
		$\delta(OCCH_n X_{3-n})$		
CH,	1.0754	1.975	86	83
5	1.160*	2.185	75	72.3
CH ₂ Cl	1.175ª	4.333	90	86.5
-	1.205	4.210	77.5	74
CHCl ₂	1.192ª	6.550	91	87
-	1.265	6.060	77	73.5
CCl ₁	1.209ª		92	88
;	1.283*		77	73.5
CH ₂ Br	1.100 ^a	3.891	88	83
-	1.230	3.990	75.8	73.2
CH ₂ I	1.083"	3.687	88	84
	1.185°	3.820	77.5	73.8
CF ₂	1.150°		88	84
2	1.250*		72.8	69.5
C,F,	1.1174		88	84
2 9	1.250*		74	71
$C_{3}F_{7}$	1.113ª		90	86
	1.250°		74.5	71
CCIF ₂	1.200"		92	88
-	1.260		75	72

^a Solvent acetone- d_6 ; int. ref. TMS. ^b Solvent CHCl₃. Recalibrated with δ (CHCl₃) 7.35.

increase with increasing electronegativity of the substituents and with the coordination number of tin. For the trimethyltin carboxylates³⁴, $J(^{119}Sn-CH_3)$ occurs around 59 Hz, thus in the vicinity observed for four-coordinated systems, *e.g.*, tetramethyltin, J 54.0 Hz and trimethyltin chloride, J 58.5 Hz. Therefore, these carboxylates exist as monomers in nonpolar solvents^{6.7}. In established penta-coordinated tin compounds, such as the pyridine adduct of trimethyltin chloride^{35,39}, or trimethyltin chloride in D₂O, the Sn-CH₃ coupling increases to 67.0 and 70.7 Hz, respectively. For dimethyltin diacetate, which contains six-coordinated tin based on COO- vibration frequencies in the infrared spectrum³³, the ¹¹⁹Sn-CH₃ coupling constant is 82.5 Hz. Thus, the magnitude of the coupling constant can be used as a diagnostic tool in predicting the coordination number of tin in the dimethylchlorotin derivatives.

Since the ¹¹⁹Sn-CH₃ coupling constants for these new dimethylchlorotin carboxylates fall in the range 73-77 in CHCl₃ solution, the structure is one in which the tin atom is penta-coordinated⁴⁰ as was suggested for R₂Sn(Cl)O₂CCH₃¹⁶ (R = Et, n-Pr, n-Bu); while in acetone- d_6 ($J(^{119}Sn-CH_3)$ 88 Hz), the tin must be six-coordinated resulting from the coordination of the carbonyl oxygen of acetone.

The linear relationship between the degree of s-character in the tin orbitals directed toward carbon and the coupling constants have been studied in detail by Homes and Kaesz³⁴ and Van der Kelen²⁸. Interpolation from the function³⁴ relating $J(^{119}Sn-CH_3)$ to the apparent s-character of the tin-atom orbital in the Sn-C bond indicates 39% s-character for the J value of 77 Hz in CHCl₃ solution and 43% s-character for 88 Hz in acetone- d_6 solution which supports the above penta- and hexa-

coordinated models for the dimethylchlorotin carboxylates.

Proton nuclear magnetic resonance measurements on the dimethylchlorotin carboxylates also show several other important features: the chemical shifts of $(CH_3)_2$ -Sn protons show very little change in the deshielding of the methyl protons with increasing electron withdrawing ability of the R groups. The inductive effect predominates in the series $R = CH_3$, CH_2Cl , $CHCl_2$, CCl_3 since there is a regular decrease of the screening constant of RCOO- protons with increasing number of halo substituents. Also, the inductive effect shows in the chemical shifts of RCOO- protons in the series CH_2Cl , CH_2Br , CH_2I . In this series, the tin-proton coupling constants show an irregular change, while they are essentially unaffected by increasing the number of chlorine substituents. The anisotropy effect must be the main contributing factor in the series $R = CF_3$, CF_2Cl , CCl_3 .

Infrared spectra

The completely rigorous assignment of the bands to their respective normal

TABLE 4

INFRARED AND RAMAN SPECTRA OF $(CH_3)_2SnClO_2CCH_3$, $(CH_3)_2SnCl_2$ AND NaO_2CCH_3

(CTT) -			$(CH_3)_2 SnCl_2$	
$(CH_3)_2$ SnOCCH ₃		Raman ⁺⁶	IR ^{+3,b}	NaOCCH ₃ ⁴¹
IR ^{a,b}	Raman ^c	(in 9 M HCl) [(CH ₃) ₂ SnCl] ⁺		IK
3014 vw	3022 w	3025		2989
2923 w 2852 vw	2930 m	2930		2936
1550 s	1572 vw			1578
1450 s	1453 vw			1443
1430 s	1432 vvw			1430
1403 s	1413 vvw		1410	1414
	1352 vvw			
1210 w	1214 m			
1196 vw	1202 w	1204	1204	
1047 vw				1042
1015 m				1009
950 vw	954 w			924
815 sh			786	
794 s			745	
685 s				646
613 w				615
576 m	577 w	577	567	
527 w	532 vvs	518	575	
493 w	500 w			460
324 s	319 s	325		
285 w	282 w			
	271 w			
	200 w			
	149 m			
	3014 vw 2923 w 2852 vw 1550 s 1450 s 1430 s 1403 s 1405 s 1405 s 1450 s 1550 s 1450 s 155 s 1550 s 1	IR ^{a,b} Raman ^c 3014 vw 3022 w 2923 w 2930 m 2852 vw 1550 s 1550 s 1572 vw 1430 s 1432 vvw 1430 s 1432 vvw 1403 s 1413 vvw 1352 vvw 1352 vvw 1210 w 1214 m 1196 vw 1202 w 1047 vw 1002 w 1047 vw 1015 m 950 vw 954 w 815 sh 794 s 685 s 613 w 576 m 577 w 522 vvs 493 w 93 w 500 w 324 s 319 s 285 w 282 w 271 w 200 w 149 m 149 m	$(CH_3)_{2}$ shows CCH_3 Raman*6 $IR^{a,b}$ $Raman^c$ $(in 9 M HCl)$ $[(CH_3)_2 SnCI]*3014 vw3022 w30252923 w2930 m29302852 vw1550 s1572 vw1450 s1453 vw1430 s1432 vvw1430 s1432 vvw1352 vvw1352 vvw1210 w1214 m1196 vw1202 w1015 m950 vw950 vw954 w815 sh794 s685 s518613 w576 m577 w532 vvs518493 w493 w500 w324 s319 s325285 w285 w282 w271 w200 w149 m$	$IR^{a,b}$ $Raman^{c}$ $Raman^{46}$ $IR^{43,b}$ $IR^{a,b}$ $Raman^{c}$ $(in \ 9 \ M \ HCl)$ $[(CH_3)_2 \ SnCl]^+$ $3014 \ vw$ $3022 \ w$ 3025 $2923 \ w$ $2930 \ m$ 2930 $2852 \ vw$ $1550 \ s$ $1572 \ vw$ $1550 \ s$ $1572 \ vw$ $1410 \ m$ $1430 \ s$ $1432 \ vvw$ $1410 \ m$ $1430 \ s$ $1432 \ vvw$ $1410 \ m$ $1403 \ s$ $1413 \ vvw$ $1410 \ m$ $1196 \ vw$ $1202 \ w$ $1204 \ m$ $1015 \ m$ $950 \ vw$ $954 \ w$ $815 \ sh$ $786 \ 794 \ s$ $613 \ w$ $576 \ m$ $577 \ s$ $576 \ m$ $577 \ s$ $518 \ s$ $576 \ m$ $577 \ s$ $518 \ s$ $493 \ w$ $500 \ w$ $324 \ s$ $319 \ s$ $325 \ s$ $285 \ w$ $282 \ w \ 271 \ w \ 200 \ w \ 149 \ m$

^a For original spectrum in NaCl region, see Okawara⁴³. ^b KBr disc. ^c Neat solid.

modes is impossible for these complex compounds. However, some assignments can be made by referring to the spectra of the corresponding sodium salts^{41,42}, the trimethyltin carboxylates^{6,8,43}, the dimethyltin diacetates³³, and methyltin chlorides⁴³⁻⁴⁷. Particularly pertinent to this work is the Raman spectrum of $[(CH_3)_2$ -SnCl]⁺ (C_{2v}) as given for $(CH_3)_2$ SnCl₂ in HCl solution⁴⁶. Corresponding peaks can be found in the infrared and Raman spectra of dimethylchlorotin acetate (taken as representative). Many of the remaining bands may be identified by comparing with the spectrum of NaOC(O)CH₃ as shown in Table 4.

The characteristic absorptions due to carbonyl asymmetric and Sn-C asymmetric and symmetric stretching frequencies and Sn-Cl vibrations are listed in Table 5. The fact that both asymmetric and symmetric stretches are observed for Sn-C indicates the presence of a nonlinear C-Sn-C moiety. Since it is difficult to assign

TABLE 5

R	$v_a(CO_2)$	$v_a(Sn-C)$	$v_s(Sn-C)$	v(Sn-Cl)
CH ₃	1550ª	576	527	324
-	1548 ^b	575	525	324
	1598*	560	523	ſ
	15724	577	532	319
CH ₂ Cl	1598ª	580	508	340
	1600	580	510	338
	1635°	580	530	340
CHCl,	1624ª	580	524	348
-	1643°	548	528	345
	1632 ^d	586	528	350
CCl ₃	1635°	583	530	340
•	1635 ⁶	586	535	335
	1650	568	525	347
CH ₂ Br	1590 °	585	528	340
	1590 ^b	585	528	340
	1620 ^c	580	527	ſ
CH₂I	1550°	573	503	316
	1553 ^b	573	510	316
	1610	573	527	ſ
CF3	1691ª	580	521	345
	1690*	581	524	347
	1692°	567	526	350
	1670 ⁴	578	526	347
C ₂ F ₅	1686ª	586	524	360
	1690 [»]	588	525	360
	1690	570	526	348
C ₃ F ₇	1655°	588	525	355
	1668*	590	524	355
	1685	568	530	348
	1671 ^d	581	527	334
CF ₂ Cl	1688" .	545	517	349
	1687 ⁹	555	527	340
	1680	564	526	350

CHARACTERISTIC ABSORPTIONS OF DIMETHYLCHLOROTIN CARBOXYLATES (CH₃)₂SnClO₂CR

^a KBr discs. ^b Nujol mull. ^c CH₂Cl₂ solution. ^d Raman. ^c CHCl₃ solution. ^f Not observed.

 $v_s(CO_2)$ frequencies in the 1400–1300 cm⁻¹ region in which C–H deformations also appear, these are omitted even though separation of $v_a(CO_2)$ and $v_s(CO_2)$ is used to detect the types of carboxyl groups by some authors^{48,49}. The $v_a(CO_2)$ frequencies increase generally with increasing electron withdrawing ability in the substituted carboxylate groups. The nujol mull spectra are essentially the same as spectra obtained from samples in KBr discs. In comparison of solution and solid state spectra, the $v_a(Sn-C)$, $v_s(Sn-C)$, v(Sn-Cl) vibrations do not show significant changes.

However, the carbonyl vibrations do shift to higher energies for the nonfluorinated carboxylates (R=CH₃, CH₂Cl, CHCl₂, CCl₃, CH₂Br, CH₂I), e.g., for (CH₃)₂ClSnO₂CCH₃ the band for the asymmetric carbonyl shifts to 1598 from 1550 cm^{-1} . For $(CH_3)_3SnO_2CCH_3^{7,10}$, with $v_a(CO_2)$ at 1658 cm^{-1} in CHCl₃ solution shifted from 1570 cm^{-1} in the solid, the shift is that expected when changing from a monomeric ester form in solution to a bridged polymeric species (penta-coordinate) in the solid. Also, from the spin-spin coupling constant⁵⁰, $J(^{119}Sn-CH_3)$ 58.2, for (CH₃)₃SnO₂C(CH₃) in CDCl₃ solution, the tin is four-coordinated which indicates a normal ester. Because of the analogous infrared shift and the $Sn-CH_3$ coupling constants in the 75 Hz region for the nonfluorinated carboxylates in CHCl₃, it is likely that a monomeric non-ester acetoxy form is present, and tin has a coordination number of five. Cryoscopic measurements of molecular weight of (C₂H₅)₂ClSnO₂- CCH_3 show that it is monomeric in nonpolar solvents (benzene)¹⁶. An infrared shift for $v_a(CO_2)$ to higher energy is also observed (1550 to 1600 cm⁻¹) suggesting a nonester type of acetoxy group. This would support a monomeric chelate structure for the new compounds. Preliminary molecular weight determinations in CHCl₃ are inconclusive, although they do point to monomeric structures in solution, e.g., the experimental values exceed theoretical for monomeric species by about 25% for (CH₃)₂ClSnO₂CCH₂I and (CH₃)₂ClSnO₂CHCl₂, but they are concentration independent.

All bands in the solution infrared spectra change proportionately with concentration which suggests that no monomer-polymer equilibrium exists.

For the compounds which have fluorine-containing carboxylate groups it should be noted that essentially no shift occurs in $v_a(CO_2)$ in going from solid to CH_2Cl_2 solution with the exception of the C_3F_7 compound. This suggests that the structure for compounds with $R = CF_3$, C_2F_5 , and CF_2Cl is not greatly different in solution. NMR data point to penta-coordinated systems in solution and Mössbauer to five-coordinated tin in the solids (see next section). Molecular weight determinations on $CF_3CO_2SnCl(CH_3)_2$ in $CHCl_3$ were: 10 mg/cm³, 919; 30 mg/cm³, 927; and 60 mg/cm³, 914. The formula weight for $CF_3CO_2SnCl(CH_3)_2$ is 297.5. Based on the experimental molecular weight, the compound must be at least trimeric or perhaps polymeric in chloroform solution. Similar results are obtained for the C_3F_7 case where experimental molecular weight values ranging between 761 and 1433 were obtained (monomeric=396). This then confirms the existence of these compounds in the solid state as polymeric structures with bridging COO- groups.

Mössbauer spectra

The ¹¹⁹Sn Mössbauer isomer shifts and quadrupole splittings provide a good tool for the study of the coordination in tin compounds. The isomer shift of the ¹¹⁹Sn resonance is related to the density of 5s electrons at the tin nucleus and the quadrupole

Compound R	δ (mm/sec)ª	$\Delta (mm/sec)^a$	$\rho \frac{\Delta}{\delta}$	
CH,	1.34	3.58	2.67	
CH ₂ Cl	1.38	3.75	2.72	
CHCl ₂	1.45	3.91	2.70	
CCl ₃	1.45	3.96	2.73	
CH,Br	1.39	3.79	2.73	
CF	1.44	3.85	2.67	
C,F,	1.45	3.90	2.69	
C_3F_7	1.40	3.83	2.74	
CF ₂ Cl	1.42	3.84	2.70	

MÖSSBAUER DATA FOR (CH₃)₂SnClO₂CR

" Values reproducible to 0.03 mm/sec.

splitting gives a measure of the deviation from cubic symmetry of the electron distibution about the tin atom. In Table 6 are found the ¹¹⁹Sn Mössbauer data recorded at 80 K for some of the dimethylchlorotin carboxylates. The spectrum of each compound was a well-resolved doublet. The isomer shift (δ) values, relative to SnO₂, fall in the region 1.34–1.45 mm/sec and the quadrupole splitting (Δ) values in the range 3.58– 3.96 mm/sec. As is the case for dialkyltin dicarboxylates, no noticeable Mössbauer effect is present at ambient temperature⁵¹. Although room temperature Mössbauer effects reportedly reflect the presence of polymeric structures^{52,53}, the dicarboxylates still doubtlessly are polymeric even though the association is probably weak. The δ values for $(CH_3)_2$ ClSnO₂CR are slightly higher than those for tetraorganotin compounds and are similar to those of (CH₃)₃SnO₂CCH₃^{10,14}, (CH₃)₃SnCN⁵⁴ and (CH₃)₃SnSCN⁵⁴, which have been shown to have a polymeric structure with bridging CO₂ or CN or SCN groups and trigonal bipyramidal configuration around the tin atom^{12,55,56}. The observed Δ values are quite large and similar to those for compounds having trigonal bipyramidal structures, e.g., trimethyltin acetates^{6,7,10}, $(CH_3)_3SnF^{54}$, and $(CH_3)_3SnCN^{54}$. Based on our Mössbauer data, all of the dimethylchlorotin carboxylates are penta-coordinate, and very likely polymeric in the solid state (i.e., $\Delta > 3.6$ mm/sec, whereas for four-coordinated R₃SnO₂CR' compounds, $\Delta \sim 2.3 \text{ mm/sec})^{11}$.

CONCLUSION

Dimethylchlorotin carboxylates can be easily made by the reaction of trimethyltin chloride with appropriate acids. These compounds have been studied by a variety of spectroscopic methods in the solid state and in solution which cause us to argue as follows:

(1) Based on $J(^{119}Sn-CH_3)$ values obtained on solutions in CHCl₃ and on quadrupole splitting values for the solids, the compounds contain penta-coordinated tin. The position of $v_a(CO_2)$ in the infrared spectra (solid or solution) is far removed from the usual organic ester frequency (1740 cm⁻¹) which suggests bridge or chelate COO- groups in penta-coordinated compounds.

(2) For the nonfluorinated carboxylates, solution in CHCl₃ or CH₂Cl₂ is accompanied by a shift to higher frequencies of $v_a(CO_2)$ which indicates a change of structure. Molecular weights done on our compounds are not convincing but the closely related molecule (C₂H₅)₂ClSnO₂CCH₃, for which a similar frequency shift occurs, is monomeric in solution. This is strong evidence for chelate monomers in solution and for COO- bridged polymeric structures in the solid.

(3) For the fluorinated carboxylates, $\Delta v_a(CO_2)$ is essentially zero when solution in CHCl₃ or CH₂Cl₂ occurs which indicates no change in structure. Molecular weight determinations on $(CH_3)_2ClSnO_2CCF_3$ point convincingly to polymers in solution (C_3F_7) is somewhat less certain) and thus to COO-bridged polymeric solids, hence eliminating penta-coordinate chelate monomers in the solid.

(4) Comparison of our Mössbauer data with that of compounds of known structure also strongly points to a polymeric solid state for all of the dimethylchlorotin carboxylates.

ACKNOWLEDGEMENTS

Fluorine research at the University of Idaho is supported by the Office of Naval Research and the National Science Foundation. We thank Dr. R. A. De Marco and Dr. D. T. Sauer for ¹⁹F nuclear magnetic resonance spectra. Special acknowledgement is due Professor F. Aubke and B. F. E. Ford of the University of British Columbia for Mössbauer measurements. The Mössbauer equipment and data processing facilities were graciously made available by Professor J. R. Sams of the University of British Columbia.

REFERENCES

- 1 R. W. Weiss, Organometallic Compounds, Vol. 11, 2nd ed., Springer-Verlag, New York, 1967, p. 342, and references therein.
- 2 C. S. Wang and J. M. Shreeve, Chem. Commun., (1970) 151.
- 3 D. W. McKennon and M. Lustig, Inorg. Chem., 10 (1971) 406.
- 4 C. S. Wang, K. E. Pullen and J. M. Shreeve, Inorg. Chem., 9 (1970) 90.
- 5 R. Okawara and M. Wada, Advan. Organometal. Chem., 5 (1967) 137, and references therein.
- 6 E. V. Van den Berghe, G. P. Van der Kelen and J. Albrecht, Inorg. Chim. Acta, 2 (1968) 89.
- 7 P. B. Simons and W. A. G. Graham, J. Organometal. Chem., 10 (1967) 457.
- 8 R. E. Hester, J. Organometal. Chem., 23 (1970) 123.
- 9 N. W. Alcock and R. E. Timms, J. Chem. Soc. A, (1968) 1873.
- 10 C. Poder and J. R. Sams, J. Organometal. Chem., 19 (1969) 67.
- 11 B. F. E. Ford, B. V. Liengme and J. R. Sams, J. Organometal. Chem., 19 (1969) 53.
- 12 M. J. Janssen, J. G. A. Luijten and G. J. M. van der Kerk, Rec. Trav. Chim. Pays-Bas, 82 (1963) 90.
- 13 R. Okawara and M. Ohara, Bull. Chem. Soc. Japan, 36 (1963) 623; J. Organometal. Chem., 1 (1964) 360.
- 14 N. W. G. Debye, D. E. Fenton, S. E. Ulrich and J. J. Zuckerman, J. Organometal. Chem., 28 (1971) 339.
- 15 M. Villarem and J. C. Maire, C.R. Acad. Sci. Paris, Sér. C, 262 (1966) 480.
- 16 M. Wada, M. Shindo and R. Okawara, J. Organometal. Chem., 1 (1963) 95.
- 17 R. Okawara and E. G. Rochow, J. Amer. Chem. Soc., 82 (1960) 3285.
- 18 I. Ruidisch, H. Schmidbaur and H. Schumann in V. Gutmann (Ed.), Halogen Chemistry, Vol. 2, Academic Press, London and N. Y., 1967, p. 223.
- 19. R. K. Ingham, Chem. Rev., 60 (1960) 459.
- 20 W. H. Nelson and D. F. Martin, J. Organometal. Chem., 4 (1965) 67.

- 21 O. Buchmann, M. Grosjean and J. Nasielski, Helv. Chim. Acta, 47 (1964) 1695.
- 22 S. D. Rosenberg, E. Debreezeni and E. L. Weinberg, J. Amer. Chem. Soc., 81 (1959) 972.
- 23 R. W. Bott, C. Eaborn and J. A. Waters, J. Chem. Soc., (1963) 681.
- 24 F. A. Yakubova, A. M. Rashkes, A. S. Kuchkarev and Z. M. Manulkin, Zh. Obshch. Khim., 35 (1962) 387.
- 25 P. A. Yeats, B. F. E. Ford, J. R. Sams and F. Aubke, Chem. Commun., (1969) 791.
- 26 N. A. Matwiyoff and R. S. Drago, Inorg. Chem., 3 (1964) 337.
- 27 V. G. Kumar Das and W. Kitching, J. Organometal. Chem., 13 (1968) 523.
- 28 G. P. Van der Kelen, Nature, 193 (1962) 1069.
- 29 S. Ichiba, M. Mishima and H. Negita, Bull. Chem. Soc. Japan, 42 (1969) 1486.
- 30 W. P. Neumann, Angew. Chem. Int. Ed. Engl., 8 (1969) 287.
- 31 H. Schumann, T. Östermann and M. Schmidt, Chem. Ber., 99 (1966) 2057.
- 32 L. Petrakis and C. H. Sederholm, J. Chem. Phys., 35 (1961) 1243.
- 33 Y. Maeda and R. Okawara, J. Organometal. Chem., 10 (1967) 247.
- 34 J. R. Holmes and H. D. Kaesz, J. Amer. Chem. Soc., 83 (1961) 3903.
- 35 M. L. Maddox, N. Flitcroft and H. D. Kaesz, J. Organometal. Chem., 4 (1965) 50.
- 36 M. P. Brown and D. E. Webster, J. Phys. Chem., 64 (1960) 698.
- 37 T. L. Brown and G. L. Morgan, Inorg. Chem., 2 (1963) 736.
- 38 J. Lorberth and H. Vahrenkamp, J. Organometal. Chem., 11 (1968) 111.
- 39 I. R. Beattie, G. P. McQuillan and R. Hulme, Chem. Ind., (1962) 1429.
- 40. M. Komura, T. Tanaka and R. Okawara, Inorg. Chim. Acta, 2 (1968) 321.
- 41 K. Ito and H. J. Bernstein, Can. J. Chem., 34 (1956) 170.
- 42 N. Fuson, M. Josien, E. A. Jones and J. R. Lawson, J. Chem. Phys., 20 (1952) 1627.
- 43 R. Okawara, D. E. Webster and E. G. Rochow, J. Amer. Chem. Soc., 82 (1960) 3287.
- 44 W. F. Edgell and G. H. Ward, J. Mol. Spectrosc., 8 (1962) 343.
- 45 F. K. Butcher, W. Gerrard, E. F. Mooney, R. G. Rees and H. A. Willis, J. Organometal. Chem., 1 (1964) 431.
- 46 M. M. McGrady and R. S. Tobias, Inorg. Chem., 3 (1964) 1157.
- 47 P. Taimsalu and J. L. Wood, Spectrochim. Acta, 20 (1964) 1043.
- 48 R. C. Poller, J. Inorg. Nucl. Chem., 24 (1962) 593.
- 49 R. A. Cummins and P. Dunn, Aust. J. Chem., 17 (1964) 185.
- 50 P. B. Simons and W. A. G. Grahan, J. Organometal. Chem., 8 (1967) 479.
- 51 V. I. Goldanski and R. H. Herber, Chemical Applications of Mössbauer Spectroscopy, Academic Press, N.Y. 1968, p. 365.
- 52 R. C. Poller, J. N. R. Ruddick, B. Taylor and D. L. B. Toley, J. Organometal. Chem., 24 (1970) 341.
- 53 H. A. Stöckler, H. Sano and R. H. Herber, J. Chem. Phys., 47 (1967) 1567.
- 54 B. Gassenheimer and R. H. Herber, Inorg. Chem., 8 (1969) 1120.
- 55 E. O. Schlemper and D. Britton, Inorg. Chem., 5 (1966) 507.
- 56 R. A. Forder and G. M. Sheldrick, Chem. Commun., (1969) 1125.